Investigations on the role of base excision repair and non-homologous end-joining pathways in sodium selenite-induced toxicity and mutagenicity in Saccharomyces cerevisiae.

نویسندگان

  • Dominika Mániková
  • Danusa Vlasáková
  • Jana Loduhová
  • Lucia Letavayová
  • Dana Vigasová
  • Eva Krascsenitsová
  • Viera Vlcková
  • Jela Brozmanová
  • Miroslav Chovanec
چکیده

Selenium (Se) belongs to nutrients that are essential for human health. Biological activity of this compound, however, mainly depends on its dose, with a potential of Se to induce detrimental effects at high doses. Although mechanisms lying behind detrimental effects of Se are poorly understood yet, they involve DNA damage induction. Consequently, DNA damage response and repair pathways may play a crucial role in cellular response to Se. Using Saccharomyces cerevisiae we showed that sodium selenite (SeL), an inorganic form of Se, can be toxic and mutagenic in this organism due to its ability to induce DNA double-strand breaks (DSBs). Moreover, we reported that a spectrum of mutations induced by this compound in the stationary phase of growth is mainly represented by 1-4 bp deletions. Consequently, we proposed that SeL acts as an oxidizing agent in yeast producing oxidative damage to DNA. As short deletions could be anticipated to arise as a result of action of non-homologous end-joining (NHEJ) and oxidative damage to DNA is primarily coped with base excision repair (BER), a contribution of these two pathways towards survival, DSB induction, mutation frequency and types of mutations following SeL exposure was examined in present study. First, we show that while NHEJ plays no role in repairing toxic DNA lesions induced by SeL, cells with impairment in BER are sensitized towards this compound. Of BER activities examined, those responsible for processing of 3'-blocking DNA termini seem to be the most crucial for manifestation of the toxic effects of SeL in yeast. Second, an impact of NHEJ and BER on DSB induction after SeL exposure turned to be inappreciable, as no increase in DNA double-strand breakage in NHEJ and BER single or NHEJ BER double mutant upon SeL exposure was observed. Finally, we demonstrate that impairment in both these pathways does not importantly change mutation frequency after SeL exposure and that NHEJ is not responsible for generation of short deletions after SeL treatment, as these were comparably induced in the wild-type and NHEJ-defective cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks

DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...

متن کامل

Repair of endonuclease-induced double-strand breaks in Saccharomyces cerevisiae: essential role for genes associated with nonhomologous end-joining.

Repair of double-strand breaks (DSBs) in chromosomal DNA by nonhomologous end-joining (NHEJ) is not well characterized in the yeast Saccharomyces cerevisiae. Here we demonstrate that several genes associated with NHEJ perform essential functions in the repair of endonuclease-induced DSBs in vivo. Galactose-induced expression of EcoRI endonuclease in rad50, mre11, or xrs2 mutants, which are defi...

متن کامل

The multifaceted influence of histone deacetylases on DNA damage signalling and DNA repair

Histone/protein deacetylases play multiple roles in regulating gene expression and protein activation and stability. Their deregulation during cancer initiation and progression cause resistance to therapy. Here, we review the role of histone deacetylases (HDACs) and the NAD+ dependent sirtuins (SIRTs) in the DNA damage response (DDR). These lysine deacetylases contribute to DNA repair by base e...

متن کامل

The Impact of Hedgehog Signaling Pathway on DNA Repair Mechanisms in Human Cancer

Defined cellular mechanisms have evolved that recognize and repair DNA to protect the integrity of its structure and sequence when encountering assaults from endogenous and exogenous sources. There are five major DNA repair pathways: mismatch repair, nucleotide excision repair, direct repair, base excision repair and DNA double strand break repair (including non-homologous end joining and homol...

متن کامل

DNA Base Excision Repair: Evolving Biomarkers for Personalized Therapies in Cancer

DNA repair is critical for maintaining genomic integrity. The DNA damage such as those induced by endogenous processes (methylation, hydroxylation, oxidation by free radicals) or by exogenous agents such as ionizing radiation, environmental toxins, and chemotherapy is processed through the DNA repair machinery in cells. At least six distinct DNA repair pathways have been described. A detailed d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mutagenesis

دوره 25 2  شماره 

صفحات  -

تاریخ انتشار 2010